In spite of a common perception that pollen grains are gametes, like the sperm cells of animals, this is incorrect; pollination is a phase in the alternation of generations: each pollen grain is a male haploid plant, a gametophyte, adapted to being transported to the female gametophyte, where it can achieve fertilization by producing the male gamete (or gametes, in the process of double fertilization).
As such the Angiosperm successful pollen grain (gametophyte) containing the male gametes (sperm) gets transported to the stigma, where it germinates and its pollen tube grows down the style to the ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. One nucleus fuses with the polar bodies to produce the endosperm tissues, and the other with the ovum to produce the embryo.
In gymnosperms the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of Gymnosperms in question.
The receptive part of the carpel is called a stigma in the flowers of angiosperms. The receptive part of the gymnosperm ovule is called the micropyle. Pollination is a necessary step in the reproduction of flowering plants, resulting in the production of offspring that are genetically diverse.
The study of pollination brings together many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilisation, which is the result of pollination.
No comments:
Post a Comment
Do leave your feedback on the comment box below.